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Orthogonal polynomial approach to fluids with internal degrees of freedom:
The case of nonpolar, polarizable molecules

F. Lado
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202

~Received 26 August 1996!

The molecules of real liquids have internal degrees of freedom that may couple with the external ones of
position and orientation so that they affect and are affected by the microscopic liquid structure. For cases where
the internal coordinates possess a Boltzmann-like distribution, a procedure is described whereby such coordi-
nates can be incorporated into the conventional formulation of classical liquid theory with no approximations
beyond some reliable closure relation familiar from simple liquids. The basis of the procedure is expansions in
appropriate orthogonal polynomials of the internal coordinates. This program is successfully carried out for a
classical model of nonpolar, polarizable molecules treated as Drude oscillators, generalizing published solu-
tions of the mean spherical approximation for the same model.@S1063-651X~97!05701-2#

PACS number~s!: 61.20.Gy, 61.25.Em, 77.22.Ch
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I. INTRODUCTION

The theory of liquids has focused strongly since its inc
tion on the averaged geometrical structure of liquids emb
ied in the pair distribution function as the key feature need
to predict thermodynamic and scattering data for these
tems. In this scheme, the molecules of the liquid are usu
treated as inert and featureless, apart from assumed
shapes, a simplification that has had great success indee
the extent that even a billiard ball model of atoms as h
spheres has relevance for real liquids. The pertinent deg
of freedom are then the fluctuating positions of the center
mass of the molecules and, for nonspherical potentials, t
fluctuating orientations, all treated in classical terms. In re
ity, of course, the internal structure of molecules is dyna
cally altered by the changing configurations of their ma
near neighbors in a condensed state~one has only to think of
the continuous emission spectra of heated solids and liq
versus the line spectra of their vapors! and in turn these
internal changes feed back into the averaged struc
through fluctuations in the effective intermolecular pote
tials. Changes in the internal structure of the molecules
volve the electrons, whose small mass means shorter
scales and longer de Broglie wavelengths requiring
quantum-mechanical description. Much work has alrea
been done in this intermediate domain where the internal
external degrees of freedom are coupled to each othe
described in a recent review by Stratt@1#. The mean spheri-
cal approximation and other linearized approximations
liquid state theory figure prominently in this work, as do
good physical insight to carry through the calculations. T
paper is motivated by the optimistic conjecture that these
not necessary features and that internal degrees of free
can be absorbed into the ‘‘canonical’’ formulation of clas
cal liquid state theory in much the same manner as orie
tional degrees of freedom have been — through the us
appropriate orthogonal polynomial expansions — so th
can be dealt with using established procedures demandin
unusual insight.

It is hardly possible to prove or disprove this propositi
551063-651X/97/55~1!/426~10!/$10.00
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in the fashion of a mathematical theorem; experience o
case-by-case basis will decide. In this paper@2#, we have
chosen probably the simplest example of coupled inter
and external degrees of freedom in a fluid: nonpolar, po
izable molecules modeled as classical Drude oscillators.~The
significant complications that are added by a quantu
mechanical description of the internal degrees of freedom
not dealt with here.!

Molecules lacking a permanent dipole moment will non
theless display instantaneous momentsp that fluctuate ran-
domly within some overall constraints and so will intera
through dipole-dipole forces with other such molecules. W
will follow Pratt @3# and Ho”ye and Stell@4# in assuming an
intrinsic thermal distribution of Gaussian form

f 0~p!5
1

~2pa0 /b!3/2
expS 2

bp2

2a0
D ~1!

for the spontaneous dipole momentp of an isolated mol-
ecule, wherea0 is the polarizability of the molecule an
b51/kBT, with T the Kelvin temperature andkB Boltz-
mann’s constant. These authors have independently so
the mean spherical approximation~MSA! for this model
~with inclusion of a permanent dipole in the case of t
Ho”ye-Stell work! and find that the fluctuating dipole distr
bution f (p) in the dense liquid remains Gaussian, an inh
ent restriction of the MSA, with a larger polarizabilit
a.a0. In this paper, we generalize these solutions to per
use ofanyclosure found accurate in studies of simple liqui
and formulate an exact, computable expression for the di
bution f (p). By going beyond a Gaussian restriction we c
show by calculation that in fact the Gaussian shape in
case is actually an excellent approximation. The key to th
generalizations is expansion in polynomials ofp that are
orthogonal with weight functionf (p).

II. DISTRIBUTION FUNCTIONS

A. Preliminaries

We consider a system ofN molecules, each with intrinsic
polarizability a0 and fluctuating polarity but no permane
426 © 1997 The American Physical Society
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55 427ORTHOGONAL POLYNOMIAL APPROACH TO FLUIDS . . .
dipole moment, contained in a volumeV at temperatureT. In
the presence of an external electric fieldE0(r ), the configu-
rational partition function of the system is

Z5
1

~2pa0 /b!3N/2VNE )
j51

N

~dr jdpj !

3expF2b(
j51

N S pj
2

2a0
2pj•Ej

0D 2bUDD2bU0G ,
~2!

whereb51/kBT and

Ej
05E0~r j !5E drE0~r !d~r2r j !, ~3!

UDD5(
i, j

u~r i j ,pi ,pj !, ~4!

U05(
i, j

u0~r i j !. ~5!

Hereu is the usual dipole-dipole interaction

u~r ,p1 ,p2!52
1

r 3
@3~ r̂•p1!~ r̂•p2!2p1•p2#, ~6!

wherer̂ is the unit vector in ther direction, while foru0 we
take the Lennard-Jones potential

u0~r !54eLJF S s

r D
12

2S s

r D
6G . ~7!

The one- and two-body distribution functions are defined
the canonical ensemble averages

r~1!~r ,p!5K (
j51

N

d~r2r j !d~p2pj !L , ~8!

r~2!~r ,p,r 8,p8!5K (
iÞ j

d~r2r i !d~p2pi !d~r 82r j !

3d~p82pj !L . ~9!

In the absenceof an external field,E0→0, the system is
uniform and isotropic and these functions simplify to

r~1!~r ,p!5r f ~p!, ~10!

r~2!~r ,p,r 8,p8!5r2f ~p! f ~p8!g~r2r 8,p,p8!, ~11!

wherer5N/V is the density. The calculations in Sec. IV fo
the distributionf (p) of the fluctuating dipoles in the dens
liquid and for the pair distribution functiong(r ,p,p8), as
well as the remainder of the discussion in this section, w
be for zero external field. The external field is used in Sec
to formulate the dielectric properties of the system.
y

ll
II

The two distribution functions are of course coupled
the intermolecular potentialu. A direct expression of this
coupling is obtained by differentiatingf (p) with respect to
p to yield

d

dp
lnF f ~p!

f 0~p!G52rE dr dp8 f ~p8!g~r ,p,p8!bu~r ,p̂,p8!,

~12!

the first member of a Kirkwood-Born-Green-Yvon hierarc
@5#. Note the unit vectorp̂ in the potentialu of this expres-
sion; the dependence onp on the right-hand side is carrie
entirely byg.

Calculation of f (p) from Eq. ~12! requires knowing the
pair distribution function~PDF!. In classical liquid state
theory, the PDF is obtained from the Ornstein-Zernike eq
tion and an approximate closure relation. The first of the
the Ornstein-Zernike~OZ! equation, generalized for fluctu
ating dipoles, reads@6#

h~r12,p1 ,p2!5c~r12,p1 ,p2!1r

3E dr3dp3f ~p3!h~r13,p1 ,p3!c~r32,p3 ,p2!,

~13!

whereh(r ,p1 ,p2)[g(r ,p1 ,p2)21 andc(r ,p1 ,p2) is a new
unknown, the direct correlation function~DCF!. The second,
or closure, relationalmostexpresses the DCF back in term
of the PDF and the system’s interactions@6#,

c~r ,p1 ,p2!5h~r ,p1 ,p2!2 lng~r ,p1 ,p2!2bu0~r !

2bu~r ,p1 ,p2!1B~r ,p1 ,p2!. ~14!

While a formal expression in terms of diagram summatio
is known forB, the so-called bridge function, it is of little
practical use and this function is usually approximated in
more-or-lessad hoc fashion, giving rise to the variety o
closures in use today; for purposes of the present discuss
B will be treated as a given.

Manifestly, solving the coupled~OZ plus closure! equa-
tions forg(r ,p1 ,p2) in turn requires knowing the dipole dis
tribution functionf (p). An iterative procedure will evidently
be needed.

Equations~12!–~14! ~plus an approximation forB) con-
stitute a closed set whose solution gives detailed microsc
information sufficient to determine all the thermodynam
and electrostatic properties of the system. The equations
ing nonlinear, ‘‘solution’’ here generally means ‘‘numeric
solution.’’ As they appear, however, these equations are
complex for numerical handling, since quantities such
g(r ,p1 ,p2) are each functions of six variables:r , p1, p2, and
v1, v2, the directions ofp1 ,p2, for which three Euler angles
suffice. It has long been standard practice in the study
molecular fluids@7# to reduce the complexity of the angula
description by using expansions in spherical harmon
Ylm(v) @8#. It is a small but fruitful step to extend this prac
tice to the internal coordinate description as well, using
pansions in an appropiate set of orthogonal polynom
Qnl(p). This is done in the Sec. II B. We note first that,
usual, Eqs.~13! and ~14! are more conveniently handled b
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428 55F. LADO
reassigning the unknown to be the indirect correlation fu
tion g5h2c, rather thang, and rewriting Eq.~13! in Fou-
rier transform representation. The result is

g̃~k,p1 ,p2!5rE dp3f ~p3!@ g̃~k,p1 ,p3!

1 c̃~k,p1 ,p3!# c̃~k,p3 ,p2! ~15!

for the OZ equation~13! and

c~r ,p1 ,p2!5exp@2bu0~r !2bu~r ,p1 ,p2!1g~r ,p1 ,p2!

1B~r ,p1 ,p2!#212g~r ,p1 ,p2! ~16!

for the closure~14!. The PDF is then computed fromg as

g~r ,p1 ,p2!5exp@2bu0~r !2bu~r ,p1 ,p2!1g~r ,p1 ,p2!

1B~r ,p1 ,p2!#. ~17!

We remark for completeness that a transform pairf (r ) and
f̃ (k) is defined by

f ~r !5
1

~2p!3
E dk f̃ ~k!eik•r, ~18!

f̃ ~k!5E dr f ~r !e2 ik•r. ~19!

B. Expansions in orthogonal polynomials

The conventional next step in solving Eqs.~15! and ~16!
is, as noted, to explicitly break out the angular dependenc
all functions in the form of expansions in spherical harmo
ics @7#, writing, e.g.,@9#

g~r ,p1 ,p2!5g~r ,p1 ,p2 ,v1 ,v2!

54p (
l1 ,l2 ,m

g l1l2m
~r ,p1 ,p2!Yl1m

~v1!Yl2m̄
~v2!,

~20!

where m̄52m. In this and similar expressions, the vect
r has been implicitly chosen as thez direction in the speci-
fication of the Euler anglesv5(u,f). What makes this ex-
pansion particularly useful@10# is of course the orthogonality
of the spherical harmonics,

E dvYlm~v!Yl 8m8
* ~v!5d l l 8dmm8, ~21!

so that the coefficients of the expansion are immediately
tainable by quadratures,

g l1l2m
~r ,p1 ,p2!5

1

4pE dv1dv2g~r ,p1 ,p2 ,v1 ,v2!

3Yl1m
* ~v1!Yl2m̄

* ~v2!. ~22!

We now similarly break out the fluctuating-dipole depe
dence in the form of expansions in polynomials ofp,
-

of
-

b-

-

g l1l2m
~r ,p1 ,p2!5 (

n1 ,n2
g l1l2m
n1n2 ~r !Qn1l1

~p1!Qn2l2
~p2!,

~23!

which are constructed to be orthogonal with weight functi
f (p),

4pE
0

`

dpp2f ~p!Qnl~p!Qn8 l~p!5dnn8, ~24!

so that coefficients of the expansion are again obtainable
quadratures,

g l1l2m
n1n2 ~r !5E

0

`

dp1dp2@4pp1
2f ~p1!#@4pp2

2f ~p2!#

3g l1l2m
~r ,p1 ,p2!Qn1l1

~p1!Qn2l2
~p2!.

~25!

Since the distribution functionf (p) will evolve during the
course of an iterative solution, the associated polynom
Qnl(p) will also change. In principle, for a generalf (p) one
may have to determine theQnl(p) by elementary methods
such as Gram-Schmidt orthogonalization@11#, starting from
Q00(p)51. At least initially, however, the distribution
f (p) in the present calculation will be Gaussian and t
needed polynomials are immediately found in the form of
eigenfunctions of the quantum-mechanical harmonic osc
tor in three dimensions using spherical coordinates. Fo
Gaussian distribution of variancea/b,

f ~p!5
1

~2pa/b!3/2
expS 2

bp2

2a D , ~26!

they are@12#

Qnl~p!5FG„ 12 ~n2 l !11…G~ 3
2 !

G„ 12 ~n1 l !1 3
2 …

G 1/2S bp2

2a D l /2

3L ~n2 l !/2
l11/2 S bp2

2a D , ~27!

whereLn
b(t) is an associated Laguerre polynomial@11,13#

and G(z) is the gamma function. For the cases studied
Sec. IV, it will turn out in fact that the computed deviation
of f (p) from a Gaussian are very small, permitting retenti
of these polynomials, with changinga, for the entire calcu-
lation.

In brief, the approach being taken here is a straightf
ward extension of the standard procedure for molecular
ids: To solve the coupled~OZ plus closure! equations~15!
and ~16!, expand all functions inr space in the form

g~r ,p1 ,p2!54p (
n1 ,n2 ,l1 ,l2 ,m

g l1l2m
n1n2 ~r !Qn1l1

~p1!Qn2l2
~p2!

3Yl1m
~v1!Yl2m̄

~v2!, ~28!

where thez axis is alongr and the summation indices satis
the constraints@12#



re

el

-

-

g-

al-

he

es,
its
th

e

n
te
ed

x-

dy

55 429ORTHOGONAL POLYNOMIAL APPROACH TO FLUIDS . . .
n50,1,2,3,. . . ,

l5n,n22,n24, . . . ,1 or 0, ~29!

m50,61,62, . . . ,6 l .

The inverse of Eq.~28!,

g l1l2m
n1n2 ~r !54pE dp1dp2f ~p1! f ~p2!g~r ,p1 ,p2!Qn1l1

~p1!

3Qn2l2
~p2!Yl1m

* ~v1!Yl2m̄
* ~v2!, ~30!

follows from the complete orthonormality statement,

4pE dpf ~p!Qnl~p!Qn8 l 8~p!Ylm~v!Yl 8m8
* ~v!

5dnn8d l l 8dmm8. ~31!

Similarly, for functions ink space, set thez axis alongk and
expand; e.g.,

g̃~k,p1 ,p2!54p (
n1 ,n2 ,l1 ,l2 ,m

g̃ l1l2m
n1n2 ~k!Qn1l1

~p1!

3Qn2l2
~p2!Yl1m

~v1!Yl2m̄
~v2!. ~32!

Note that the anglesv1 ,v2 are referred todifferentaxes in
Eqs.~28! and ~32!. The coefficients of these expansions a
not themselves mutual Fourier transforms.

C. Iterative solution for f „p…

The simplification these expansions effect is immediat
reflected in the evaluation of Eq.~12! for f (p). We note first
that using the inversion, Eq.~30!, one finds that the expan
sion coefficients of the dipole-dipole potential~6! are

bu110
11 ~r !52

2a

r 3
,

bu111
11 ~r !5bu1121

11 ~r !52
a

r 3
, ~33!

which are the obvious generalizations~superscripts 11 ap
pear, sinceu is bilinear in p1 ,p2) of the coefficients for
permanent dipoles. Then introducing the expansions ofu and
g into Eq. ~12!, we find immediately

d

dp
lnF f ~p!

f 0~p!G52S 4b

3a D 1/2 (
n52,4,6, . . .

jnQn21,1~p!, ~34!

where

jn5
1

2
rE dr (

m521,0,1
g11m
n21,1~r !bu11m̄

11 ~r !. ~35!

Further, it is easily shown that forn even,

Qn21,1~p!52S a

nb D 1/2dQn0~p!

dp
, ~36!
y

so that Eq.~34! can be integrated to give the new fluctuatin
dipole distribution as

lnF f ~p!

f 0~p!G5 (
n52,4,6, . . .

S 4

3nD
1/2

jnQn0~p!

5(
j51

` S 23 j D
1/2

j2 j L̂ j
1/2S bp2

2a D . ~37!

HereL̂ j
1/2(t) is the associated Laguerre polynomial renorm

ized to unity,

L̂ j
l11/2~ t !5FG~ j11!G~ l13/2!

G~ j1 l13/2! G1/2L j
l11/2~ t !. ~38!

More explicitly, Eq.~37! reads

lnf ~p!5 lnf 0~p!1j2S 12
bp2

3a D1j4S 58D
1/2F122S bp2

3a D
1
3

5 S bp2

3a D 2G1•••. ~39!

As mentioned earlier, it is found by calculation that, for t
cases studied in Sec. IV,j4 is very small, smaller thanj2 by
some two orders of magnitude. In these circumstanc
f (p) remains Gaussian to a very good approximation and
iterative recalculation simplifies to finding just its new wid
a. We have

lnf ~p!'2
3

2
lnS 2pa0

b D1j22S 1a0
1
2

3

j2
a D bp2

2

'2
3

2
lnS 2pa8

b D2
bp2

2a8
, ~40!

wherea8, the newa for the next iteration, is

a85a0S 11
2

3

a0

a
j2D 21

, ~41!

and so, upon convergence, we have finally

a5a0S 12
2

3
j2D . ~42!

If we further note thatj2 is just the reduced dipole-dipol
mean energy,j25bŪDD /N, we see that Eq.~41! is precisely
the iterative scheme derived by Pratt@3# and by Ho”ye and
Stell @4# in the context of their solutions of the MSA versio
of this problem. It is clear that this result is in fact qui
general and not restricted to the MSA and other lineariz
approximations.

D. Iterative solution for g„r,p1 ,p2…

With the internal degrees of freedom included in the e
pansion bases, the solution of the~OZ plus closure! equa-
tions for a polarizable fluid follows along a path alrea
taken for purely molecular fluids@14,15#. Thus, upon intro-
ducing the full expansions~32! for g̃ and c̃ and exploiting
the orthonormality of the basis functions, Eq.~31!, one finds
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that the Ornstein-Zernike equation~15! goes over into a se
of matrix equations for the respective coefficients

g̃ l1l2m
n1n2 ~k!5~21!mr (

n3 ,l3
@ g̃ l1l3m

n1n3 ~k!1 c̃ l1l3m
n1n3 ~k!# c̃ l3l2m

n3n2 ~k!

~43!

or, in matrix notation,

G̃m~k!5~21!mr@G̃m~k!1C̃m~k!#C̃m~k!, ~44!

which have the solution
fu
a
y

on

ffi

o-
f

e

or

r

G̃m~k!5~21!mrC̃m~k!C̃m~k!@ I2~21!mrC̃m~k!#21.
~45!

HereG̃m(k) andC̃m(k) are, respectively, the symmetric ma
trices with elementsg̃ l1l2m

n1n2 (k) and c̃ l1l2m
n1n2 (k), n,l>m, and

I is the unit matrix. The degree of these matrices is de
mined by the largest value of the indexm, call it M , that is
used in a calculation. Thus, by way of example, forM54
the matrixC̃1(k) is
S c̃ 111
11 ~k! c̃ 111

13 ~k! 0 0 c̃ 131
13 ~k! 0

c̃ 111
31 ~k! c̃ 111

33 ~k! 0 0 c̃ 131
33 ~k! 0

0 0 c̃ 221
22 ~k! c̃ 221

24 ~k! 0 c̃ 241
24 ~k!

0 0 c̃ 221
42 ~k! c̃ 221

44 ~k! 0 c̃ 241
44 ~k!

c̃ 311
31 ~k! c̃ 311

33 ~k! 0 0 c̃ 331
33 ~k! 0

0 0 c̃ 421
42 ~k! c̃ 421

44 ~k! 0 c̃ 441
44 ~k!

D .
are
ans-
o-

ro-
As is apparent from this example, these matrices in fact
ther factor into odd and even submatrices for which the m
trix solutions of Eq.~45! may be found separately, a ver
minor saving in computation.

The computational parameterM 5 max(m) determines
the total number of distinct coefficients used in a calculati
For M50,1,2,3,4,5,. . . , this number is
1,3,10,22,49,91,. . . , respectively. TheFORTRAN program
for this calculation was designed to use up to the 49 coe
cients forM54; in practice, it is found thatM53 with 22
coefficients is entirely adequate.

As with purely molecular fluids, the evaluation of the cl
sure relation, Eq.~16!, is the most time-consuming step o
the calculation. Here the functiong(r ,p1 ,p2 ,v1 ,v2) is first
assembled from its coefficients using Eq.~28! @see Eq.~50!
below for the numerical version#, as are the potentials and~in
some fashion! the bridge function B, from which
g(r ,p1 ,p2 ,v1 ,v2) is computed using Eq.~17!. The coeffi-
cients ofg are then explicitly calculated by evaluating th
inversion equation~30! using Gaussian quadrature:

gl1l2m
n1n2 ~r !5 (

i1 ,i2 ,k1 ,k2 , j51

Np

w~ i 1!w~ i 2!w~k1!w~k2!w~ j !

3g~r ,i 1 ,i 2 ,k1 ,k2 , j !

3Qn1l1
~ i 1!Qn2l2

~ i 2!Pl1m~k1!Pl2m~k2!

3~21!mTm~ j !. ~46!

In this expression,i used as an argument stands f
t i5bpi

2/2a0, the i th root of LNp
1/2(t), k for xk5cosuk , the

kth root of PNp
(x), and j for yj5cosfj , the j th root of

TNp(y), whereLNp
1/2(t), PNp

(x), andTNp(y) are the associ-

ated Laguerre, Legendre, and Chebyshev polynomials,
r-
-

.

-

e-

spectively, all of orderNp and so each withNp roots. The
w are the corresponding Gaussian weights

w~ i !5$t i@ L̂Np
1/28~ t i !#

2%21, ~47!

w~k!5$~12xk
2!@PNp

8 ~xk!#
2%21, ~48!

w~ j !5Np
21 , ~49!

where prime denotes derivative. Finally,Plm(x) in Eq. ~46!
is the associated Legendre function normalized to 2.

Equation~46! and its numerical conjugate@from Eq.~28!#

g~r ,i 1 ,i 2 ,k1 ,k2 , j !5 (
n1 ,n2 ,l1 ,l2 ,m

g l1l2m
n1n2 ~r !Qn1l1

~ i 1!

3Qn2l2
~ i 2!Pl1m~k1!Pl2m~k2!nmTm~ j !

~50!

constitute separable, five-dimensional transforms. They
each executed as five successive one-dimensional tr
forms, following a generalized fast-transform algorithm pr
posed by Orszag@17#. In Eq. ~50!, n051 and nm52 for
m.0.

The OZ equation~45! effects the transformation

c̃ l1l2m
n1n2 ~k!→g̃ l1l2m

n1n2 ~k!

in Fourier transform space, while the closure relation p
duces the inverse transformation in direct space,

g l1l2m
n1n2 ~r !→cl1l2m

n1n2 ~r !
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@combining Eq.~46! with c5g212g#. It remains to link
these two together, in a cyclic loop for the iterative soluti
of g, by the Fourier transform steps

cl1l2m
n1n2 ~r !→ c̃ l1l2m

n1n2 ~k!

and the inverse

g̃ l1l2m
n1n2 ~k!→g l1l2m

n1n2 ~r !.

Because the anglesv associated with the conjugate coef
cients are defined in different spaces~with the z axis along
r in one case and alongk in the other! there are several part
to these Fourier transforms that are detailed in earlier pu
cations@14,16#.

The final result is a computational cycle forg that is
repeated until convergence is achieved, whereu
g(r ,p1 ,p2) is known for the current dipole distributio
f (p). The program then returns to Eq.~37! for recalculation
of f (p) ~actually, recalculation of the widtha) and a new
cycle is started forg. @The ~OZ plus closure! cycle for g is
‘‘informed’’ of the new f (p) through the new values of th
u coefficients in Eqs.~33!.# The entire calculation is repeate
until overall self-consistency is reached for bothf (p) and
g(r ,p1 ,p2). The iterations forf (p) converge very rapidly.

III. ELECTROSTATICS

Several electrostatic properties of the nonpolar, pola
able liquid are computed in Sec. IV. Here we briefly revie
their derivation using the formalism developed above.
great amount of progress has been made in recent yea
formulating an atomistic description of the electrostatic pro
erties of fluids@18–22#, in contrast to the traditional view o
dielectric materials as continuous. In this section, we see
exploit the orthogonal polynomial expansions for polariza
fluids to rederive some of these results in a compact fash

A. Polarization density and dielectric constant

The polarization density at pointr in the fluid in the pres-
ence of an external electric fieldE0(r ) is defined by the
canonical average

P~r !5K (
i
pid~r2r i !L , ~51!

taken with the probability density inZ, Eq.~2!. Equivalently,
it is obtained, in component form, as the functional deriv
tive

1

b

d lnZ

dEa
0~r !

5K (
i
pa id~r2r i !L 5Pa~r !, ~52!

where subscripta is x, y, or z, the Cartesian component
The responseP(r ) can formally be calculated to first order i
the perturbing fieldE0(r ) in the form of a truncated func
tional Taylor-series expansion
li-

n

-

in
-

to
e
n.

-

Pa~r !5E dr 8(
b

dPa~r !

dEb
0~r 8!

U
E050

Eb
0~r 8!

5E dr 8(
b

xab
0 ~r2r 8!Eb

0~r 8!, ~53!

where

xab
0 ~r2r 8!5

1

b

d2lnZ

dEb
0~r 8!dEa

0~r !UE050

5bK (
i , j

pa i pb jd~r2r i !d~r 82r j !L
E050

~54!

is the susceptibility tensor of the system with respect to
external field. Applying the definitions of the one- and tw
body distribution functions, Eqs.~8! and~9!, and specializing
them for zero field, we find

xab
0 ~r !5bE dp dp8papb8 $r f ~p!d~r !d~p2p8!

1r2f ~p! f ~p8!g~r ,p,p8!%5Frb

3
^p2&d~r !

1br2E dp dp8 f ~p! f ~p8!g~r ,p,p8!papa8 Gdab .

~55!

We may now put thez axis in the direction ofr and use the
full expansion ofg(r ,p,p8) @see Eq.~28!# to evaluate the
remaining integrals. The result is

xxx
0 ~r !5xyy

0 ~r !5ar@d~r !2rg111
11 ~r !#, ~56!

xzz
0 ~r !5ar@d~r !1rg110

11 ~r !#, ~57!

where we have used̂p2&53a/b.
The transform ofxaa

0 (r ) from Eq. ~55! is

x̃ aa
0 ~k!5ar1br2E dp dp8 f ~p! f ~p8!h̃~k,p,p8!papa8

~58!

and expansion ofh̃(k,p,p8) as in Eq.~32!, with z axis along
k, similarly leads to

x̃ xx
0 ~k!5x̃ yy

0 ~k!5ar@12rh̃ 111
11 ~k!#, ~59!

x̃ zz
0 ~k!5ar@11rh̃ 110

11 ~k!#. ~60!

The connection between the dielectric constante and these
susceptibilities is@22#

4p lim
k→0

x̃ xx
0 ~k!54p lim

k→0
x̃ yy
0 ~k!5e21, ~61!

4p lim
k→0

x̃ zz
0 ~k!5

e21

e
, ~62!
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and so we find

e2154par@12rh̃ 111
11 ~0!#, ~63!

e21

e
54par@11rh̃ 110

11 ~0!#. ~64!

The ratio of these gives finally

e5
12rh̃ 111

11 ~0!

11rh̃ 110
11 ~0!

, ~65!

which is the direct analog~with superscripts 11! of the di-
electric constant of permanent dipoles.

Other analogs are easily obtained. Thus, from the trac
x̃ ab
0 (0), wehave

~e21!~2e11!

3e
54parF11

1

3
rh̃ D

11~0!G , ~66!

h̃ D
11~k![h̃ 110

11 ~k!22h̃ 111
11 ~k!, ~67!

while the difference of Eqs.~63! and ~64! gives

~e21!2

e
524par2h̃ D

11~0!, ~68!

h̃ D
11~k![h̃ 110

11 ~k!1h̃ 111
11 ~k!. ~69!

B. Reaction field of a fixed dipole

In the absence of an external field, the polarization den
from Eq. ~51! of course vanishes by symmetry,

P~r !5E dpr~1!~r ,p!p5rE dpf ~p!p50. ~70!

If, however, we calculate theconditionalpolarization density
at r , given a dipolep0 at the origin, we get the induced fiel
of the dipolep0. Define the joint distribution

P~r ,p0!5K (
iÞ j

pjd~r2r j !d~r i !d~p02pi !L
E050

5r2f ~p0!E dpf ~p!g~r ,p0 ,p!p. ~71!

The density of molecules with dipolep0 at the origin is
r f (p0), so the conditional distribution of polarization give
p0 at the origin is

P~r up0!5
P~r ,p0!

r f ~p0!
5rE dpf ~p!g~r ,p0 ,p!p. ~72!

Once again, the full expansion ofg(r ,p0 ,p) allows this in-
tegral to be readily evaluated. The result is

P~r up0!5rH110~r ,p0!~ r̂•p0! r̂1rH111~r ,p0!@~ r̂•p0! r̂2p0#,
~73!

where
of

ty

H110~r ,p0!5 (
n51,3,5, . . .

g110
n1 ~r !Qn1~p0!/Q11~p0!

5(
j50

`

g110
2 j11,1~r !L̂ j

3/2S bp0
2

2a D , ~74!

and similarly

H111~r ,p0!5(
j50

`

g111
2 j11,1~r !L̂ j

3/2S bp0
2

2a D . ~75!

Alternatively, Eq.~73! can be rearranged to read

P~r up0!5
1

3
rHD~r ,p0!p01

1

3
rHD~r ,p0!@3~ r̂•p0! r̂2p0#,

~76!

whereHD[H11022H111 and HD[H1101H111. The j50
term of Eq.~76! is Pratt’s result@3# in the MSA. Following
Pratt, we use this distribution to get the reaction fie
ER(p0) produced at the origin by the polarized system,

ER~p0!5E dr
1

r 3
~3r̂ r̂21!•P~r up0!

5p0
2

3
rE dr

HD~r ,p0!

r 3
5p0(

j50

`

E2 j11L̂ j
3/2S bp0

2

2a D ,
~77!

where

En5
2

3
rE dr

1

r 3
@g110

n1 ~r !1g111
n1 ~r !#. ~78!

More explicitly, we have

ER~p0!/p05E11E3S 52D
1/2S 12

bp0
2

5a D 1•••, ~79!

where again the leading termE1 is Pratt’s result@3#.

IV. RESULTS

Using the integral equation procedures described abo
the thermodynamic, dielectric, and structural properties o
system of nonpolar, polarizable Lennard-Jones molecu
have been calculated for ten states for which the molecu
dynamics data of Pollock and Alder@23,24# are available.
The specific closure used is the optimized referen
hypernetted-chain~RHNC! approximation@25–27#, with the
bridge functionB represented by just a spherically symme
ric hard-sphere term

B~r ,p1 ,p2!'BHS~r ;sHS!. ~80!

The critical feature in this approximation is that the har
sphere diametersHS is consideredadjustable@26#; it is cho-
sen to satisfy the optimization condition@27#

rE dr @g000
00 ~r !2gHS~r ;sHS!#

]BHS~r ;sHS!

]sHS
50, ~81!
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TABLE I. Computed thermodynamic properties of a nonpolar, polarizable Lennard-Jones liquid fo
states characterized byr, T, anda0 values;sHS is the corresponding hard-sphere diameter of the refere
system for the optimized RHNC closure used in the calculation.

State rs3 kBT/eLJ a0 /s
3 sHS/s bŪDD /N bU/N bp/r ](bp)/]r

1 0.840 0.700 0.02 1.0244 -0.007 -8.709 -0.213 21.79
2 0.844 0.838 0.02 1.0160 -0.007 -7.127 1.121 22.12
3 0.844 0.820 0.04 1.0169 -0.027 -7.326 0.974 22.13
4 0.840 0.720 0.05 1.0230 -0.041 -8.470 -0.023 21.67
5 0.844 0.832 0.07 1.0161 -0.082 -7.258 1.022 21.96
6 0.200 2.010 0.10 0.9081 -0.037 -0.689 0.808 0.713
7 0.700 1.970 0.10 0.9743 -0.144 -2.332 2.028 8.166
8 0.840 0.670 0.10 1.0260 -0.168 -9.304 -0.686 21.48
9 0.844 0.836 0.10 1.0156 -0.172 -7.305 0.986 21.74
10 0.840 0.800 0.14 1.0171 -0.362 -7.825 0.486 20.73
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which minimizes the free energy and improves the inter
thermodynamic consistency of the approximation. A be
approximation would include at least the same coefficient
B as are present in the total potential, but little is know
about the higher coefficients. However, experience with s
tems of dipolar molecules@16,28# and the relative smallnes
of the induced dipolar effects suggest that reasonable re
can be obtained with just Eq.~80!. The hard-sphere correla
tion functions needed for this are modeled with empirical
@29,30#. The closure, Eq.~80!, is the only approximation in
this calculation.

Integrals overr are evaluated using the trapezoidal ru
on a grid ofNr51024 points with an intervalDr /s50.02.
Similarly, integrals overk are evaluated using the trapezoid
rule and Nr points, with an intervalDk5p/NrDr . The
Gaussian quadratures for the expansion coefficients,
~46!, are carried out withNp56 points; increasing this to
Np510 produces no significant changes in the computed
sults.

The thermodynamic properties computed are the usua
ternal energyU, pressurep, and isothermal compressibilit
KT . For a total potentialf(r ,p1 ,p2), the internal energy is
given by

bU

N
5
1

2
rE dr dp1dp2f ~p1! f ~p2!g~r ,p1 ,p2!bf~r ,p1 ,p2!

5
1

2
rE dr (

n1 ,n2 ,l1 ,l2 ,m
gl1l2m
n1n2 ~r !bf

l1l2m̄

n1n2 ~r !. ~82!

For the present calculation, this becomes

bU

N
5

bŪ0

N
1

bŪDD

N
, ~83!

where

bŪ0

N
5
1

2
rE drg000

00 ~r !bu0~r ! ~84!

is the Lennard-Jones contribution and
l
r
f

s-

lts

s

l

q.

e-

n-

bŪDD

N
5
1

2
rE dr (

m521,0,1
g11m
11 ~r !u11m̄

11 ~r ! ~85!

the induced dipole-induced dipole part. Similarly, the gene
expression for the pressure

bp

r
512

1

6
rE dr (

n1 ,n2 ,l1 ,l2 ,m
gl1l2m
n1n2 ~r !rbf

l1l2m̄

n1n28~r !

~86!

here yields

bp

r
5

bp0
r

1
bŪDD

N
, ~87!

where

bp0
r

512
1

6
rE drg000

00 ~r !rbu08~r ! ~88!

and the dipole-dipole increment reduces to the equiva
energy contribution. In these expressions, the prime den
a derivative. Finally, the compressibilityKT is obtained as

]~bp!

]r
5

b

rKT
512rE drc000

00 ~r !. ~89!

The computed thermodynamic results are listed in Ta
I, along with the values of densityr, temperatureT, and
intrinsic polarizibility a0 that characterize the ten states. F
completeness, we also give the hard-sphere diametersHS
that results from the RHNC optimization, Eq.~81!. All quan-
tities, along with those of Table II, are expressed in dime
sionless form, using the Lennard-Jones parameters of Eq~7!
where appropriate. There are no published molecu
dynamics~MD! thermodynamic data for comparisons.

The dielectric properties stemming froma0 are assembled
in Table II for the same ten states. We see that the ex
expansion forf (p) given by Eq.~37! or ~39!, with coeffi-
cientsj2 j , is very rapidly convergent. In fact, withj4 about
two orders of magnitude smaller thatj2 in all cases,f (p)
remains essentially Gaussian throughout, with a wi
a.a0 that is obtainable fromj2 through Eq.~42!. Similarly,
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TABLE II. Computed electrostatic properties of a nonpolar, polarizable Lennard-Jones liquid fo
states of Table I; comparison with molecular-dynamics~MD! results of Pollock and Alder@23,24#.

s3ER /p0 e
State j2 j4 a/s3 s3E1 s3E3 Present work MD Present work MD

1 -0.0068 0.0000 0.0201 0.2259 -0.0000 0.226 0.22 1.227 1
2 -0.0069 0.0000 0.0201 0.2302 -0.0000 0.231 0.23 1.229
3 -0.0271 0.0000 0.0407 0.4438 -0.0002 0.445 0.45 1.497
4 -0.0414 0.0000 0.0514 0.5375 -0.0004 0.540 0.53 1.646 1
5 -0.0824 0.0001 0.0739 0.7441 -0.0012 0.748 0.77 2.003
6 -0.0372 0.0006 0.1025 0.2418 -0.0039 0.242 0.23 1.280 1
7 -0.1437 0.0011 0.1096 0.8743 -0.0069 0.873 2.284 2.
8 -0.1675 0.0006 0.1112 1.0047 -0.0033 1.013 2.688 2.
9 -0.1720 0.0006 0.1115 1.0286 -0.0038 1.035 1.04 2.699
10 -0.3619 0.0032 0.1738 1.3883 -0.0123 1.397 1.40 4.150 3
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the exact expansion for the reaction field of a fixed dipo
Eq. ~77! or ~79!, is dominated by the leading termE1; the
second term withE3, however, does make a detectable,
small, difference for largera0 and improves the agreeme
with the MD data of Pollock and Alder@23,24#. As in that
work, the total reaction fieldER(p0) is evaluated for unit
dipole strengthp0 /(s

3eLJ)
1/251. Finally, we list the dielec-

tric constante calculated from theh̃ 11m
11 (0). Where MD data

are available for comparison, the computed results in Ta
II are seen to be quite good.

V. CONCLUSION

The internal degrees of freedom of molecules in a liq
may couple with the external ones of position and orientat
so that they affect and are affected by the microscopic st
ture of the liquid. The principal motivation for this work i
the sense that these internal coordinates should be man
able in liquid state calculations in much the same way as
the orientational degrees of freedom: through expansion
special orthogonal polynomials tailored to the specific cas
When the internal variable, such as the fluctuating dip
momentp treated in this paper, has a distributionf (p), this
means polynomials orthogonal with weight functionf (p).
Given these polynomials, one can construct an algorithm
the iterative solution of the mutually dependent microsco
liquid structure, as described by the pair distribution funct
g(r ,p,p8), and ‘‘internal structure,’’ as described by the di
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ic
ze
,
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tribution function f (p), with no further approximations be
yond that of some closure relation familiar from simple cla
sical liquids.

We have carried out here such a program for nonpo
polarizable fluids, generalizing for arbitrary closures t
MSA solutions of Pratt@3# and Ho”ye and Stell@4#. By being
able to go beyond the Gaussian approximation forf (p) that
is inherent in the MSA solution, we could demonstrate
calculation that in fact this is an excellent representation
f (p) in dense systems. Other models with a classical Bo
mann factor for the internal degrees of freedom can pres
ably be studied in the same way, most immediately syste
of polar, polarizable molecules, which Ho”ye and Stell@4#
have also solved in the mean spherical approximation.

Coupling the external degrees of freedom to inter
quantum-mechanical variables in a similarly computa
fashion is a more challenging task. Stratt and co-work
@1,31# have formulated an elegant method to convert qu
tum problems such as calculating the band structure o
liquid into equivalent classical problems of determining t
pair structure of liquids with artificial internal degrees
freedom and have further solved such problems in the m
spherical approximation@1,31–33#. Unfortunately for the
present goals, however, this conversion makes use of
analytical ‘‘replica trick,’’ which does not lend itself to the
numerical handling required for a general closure. Whet
an adaptation of their method that does allow for numeri
solution is possible is an open question.
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