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Orthogonal polynomial approach to fluids with internal degrees of freedom:
The case of nonpolar, polarizable molecules

F. Lado
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202
(Received 26 August 1996

The molecules of real liquids have internal degrees of freedom that may couple with the external ones of
position and orientation so that they affect and are affected by the microscopic liquid structure. For cases where
the internal coordinates possess a Boltzmann-like distribution, a procedure is described whereby such coordi-
nates can be incorporated into the conventional formulation of classical liquid theory with no approximations
beyond some reliable closure relation familiar from simple liquids. The basis of the procedure is expansions in
appropriate orthogonal polynomials of the internal coordinates. This program is successfully carried out for a
classical model of nonpolar, polarizable molecules treated as Drude oscillators, generalizing published solu-
tions of the mean spherical approximation for the same m¢8&063-651X97)05701-2

PACS numbgs): 61.20.Gy, 61.25.Em, 77.22.Ch

I. INTRODUCTION in the fashion of a mathematical theorem; experience on a
case-by-case basis will decide. In this pap2|, we have
The theory of liquids has focused strongly since its incep-chosen probably the simplest example of coupled internal
tion on the averaged geometrical structure of liquids embodand external degrees of freedom in a fluid: nonpolar, polar-
ied in the pair distribution function as the key feature neededzable molecules modeled as classical Drude oscillat@te
to predict thermodynamic and scattering data for these sysignificant complications that are added by a quantum-
tems. In this scheme, the molecules of the liquid are usua"\ynechanical_ description of the internal degrees of freedom are
treated as inert and featureless, apart from assumed fixd¥pt dealt with hers. , ,
shapes, a simplification that has had great success indeed, to™Molecules lacking a permanent dipole moment will none-
the extent that even a billiard ball model of atoms as hardl€less display instantaneous momemtthat fluctuate ran-

spheres has relevance for real liquids. The pertinent degreggmly within some overall constraints and so will interact

of freedom are then the fluctuating positions of the centers Oﬁh_rough dipole-dipole forces with other such molecules. We

mass of the molecules and, for nonspherical potentials, theW'”.fOI.IOW Pratt [3] af.‘d H(ye and Stel'l[4] In assuming an
) : . . : intrinsic thermal distribution of Gaussian form
fluctuating orientations, all treated in classical terms. In real-
ity, of course, the internal structure of molecules is dynami- 1 p2
cally altered by the changing configurations of their many fo(p)= WGXF( - g) (1)
near neighbors in a condensed statiee has only to think of 0 0
the continuous emission spectra of heated solids and liquid®r the spontaneous dipole momentof an isolated mol-
versus the line spectra of their vappm@nd in turn these ecule, wherea, is the polarizability of the molecule and
internal changes feed back into the averaged structur8=1/kgT, with T the Kelvin temperature anélg Boltz-
through fluctuations in the effective intermolecular poten-mann’s constant. These authors have independently solved
tials. Changes in the internal structure of the molecules inthe mean spherical approximatidivSA) for this model
volve the electrons, whose small mass means shorter tim@vith inclusion of a permanent dipole in the case of the
scales and longer de Broglie wavelengths requiring dHoye-Stell work and find that the fluctuating dipole distri-
quantum-mechanical description. Much work has alreadypution f(p) in the dense liquid remains Gaussian, an inher-
been done in this intermediate domain where the internal an@nt restriction of the MSA, with a larger polarizability
external degrees of freedom are coupled to each other, as> ao. In this paper, we generalize these solutions to permit
described in a recent review by Striti. The mean spheri- use ofanyclosure found accurate in studies of simple liquids
cal approximation and other linearized approximations ofand formulate an exact, computable expression for the distri-
liquid state theory figure prominently in this work, as doesbution f(p). By going beyond a Gaussian restriction we can
good physical insight to carry through the calculations. Thisshow by calculation that in fact the Gaussian shape in this
paper is motivated by the optimistic conjecture that these arease is actually an excellent approximation. The key to these
not necessary features and that internal degrees of freedogeneralizations is expansion in polynomials pfthat are
can be absorbed into the “canonical” formulation of classi- orthogonal with weight functiori(p).
cal liquid state theory in much the same manner as orienta-
tional degrees of freedom have been — through the use of Il. DISTRIBUTION FUNCTIONS
appropriate orthogonal polynomial expansions — so they
can be dealt with using established procedures demanding no
unusual insight. We consider a system &f molecules, each with intrinsic
It is hardly possible to prove or disprove this proposition polarizability «q and fluctuating polarity but no permanent

A. Preliminaries
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dipole moment, contained in a voluriveat temperaturd. In The two distribution functions are of course coupled by
the presence of an external electric fi@l®(r), the configu- the intermolecular potential. A direct expression of this
rational partition function of the system is coupling is obtained by differentiatinf(p) with respect to
N p to yield
z= - fH(drdp) d [f(p)
= 5NN | L jdp; p Vel , o
(2mao/ BTVE) =1 ap" fo(p)}:_pf dr dp’f(p")g(r,p.p")Bu(r,p.p"),

N 2
xex;{—BE (p_]_pj'EJQ)_BUDD_BUO}a (12
=1\ 220 the first member of a Kirkwood-Born-Green-Yvon hierarchy
(2)  [5]. Note the unit vectop in the potentialu of this expres-
sion; the dependence gnon the right-hand side is carried
where 8= 1/kgT and entirely byg.
Calculation off(p) from Eq. (12) requires knowing the

0_ =0/ \_ 0 _ pair distribution function(PDF). In classical liquid state
Bj=EX(ry)= J drEx(r)a(r=ry), ®) theory, the PDF is obtained from the Ornstein-Zernike equa-
tion and an approximate closure relation. The first of these,
the Ornstein-Zernik€OZ) equation, generalized for fluctu-
UDD:% u(rij .pi.p)), (4 ating dipoles, readgs]
h(riz,p1,P2) =C(r2,p1,P2) +p
Uo=2 Ug(rij)- )
= XJ dradpsf(p3)h(riz,p1,P3)c(raz,P3,P2),
Hereu is the usual dipole-dipole interaction (13

1 .- - whereh(r,p;,p2) =9(r,p1,p2) —1 andc(r,p;,py) is a new
u(r,p1,p2) == 3[3(r-p1)(r-p2) —pa-p2l, (6)  unknown, the direct correlation functid®CF). The second,
or closure, relatioralmostexpresses the DCF back in terms

wheref is the unit vector in the direction, while foru, we  ©of the PDF and the system’s interactidi,
take the Lennard-Jones potential

o 12 o 6
7[5

While a formal expression in terms of diagram summations

The one- and two-body distribution functions are defined byis known for B, the so-called bridge function, it is of little

the canonical ensemble averages practical use and this function is usually approximated in a
more-or-lessad hoc fashion, giving rise to the variety of

N N closures in use today; for purposes of the present discussion,
pM(r,p)= 21 o(r=ryé(p—pj) ), (8 B will be treated as a given.
= Manifestly, solving the couple¢OZ plus closurg equa-

tions forg(r,p;,p2) in turn requires knowing the dipole dis-

c(r,p1,P2)=h(r,p1,p2) —INg(r,p1,p2) — Buo(r)

Uo(r)=4€ 7 = Bu(r,p1,p2) +B(r,p1,p2). (14

p@(r,p,r’.p)= < E S(r—r)8(p—p)a(r'—r;) tribution functionf(p). An iterative procedure will evidently
%] be needed.
Equations(12)—(14) (plus an approximation foB) con-
X 8(p' — pj)> _ (9)  stitute a closed set whose solution gives detailed microscopic
information sufficient to determine all the thermodynamic

_ ~and electrostatic properties of the system. The equations be-
In the absenceof an external field E°—0, the system is ing nonlinear, “solution” here generally means “numerical

uniform and isotropic and these functions simplify to solution.” As they appear, however, these equations are too
complex for numerical handling, since quantities such as
pV(r.p)=pf(p), (100 g(r,py,p,) are each functions of six variablas:p,, p,, and

w1, Wy, the directions op,,p,, for which three Euler angles
p@(r,p,r',p")=p%f(p)f(p)g(r—r’,p,p’), (11)  suffice. It has long been standard practice in the study of
molecular fluidg 7] to reduce the complexity of the angular
wherep=N/V is the density. The calculations in Sec. IV for description by using expansions in spherical harmonics
the distributionf(p) of the fluctuating dipoles in the dense Y,(w) [8]. It is a small but fruitful step to extend this prac-
liquid and for the pair distribution functiog(r,p,p’), as tice to the internal coordinate description as well, using ex-
well as the remainder of the discussion in this section, willpansions in an appropiate set of orthogonal polynomials
be for zero external field. The external field is used in Sec. llIQ,(p). This is done in the Sec. Il B. We note first that, as
to formulate the dielectric properties of the system. usual, Eqs(13) and(14) are more conveniently handled by
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reassigning the unknown to be the indirect correlation func-

tion y=h—c, rather tharg, and rewriting Eq(13) in Fou-
rier transform representation. The result is
'7(k,p1,p2)==p_f dpsf(ps)[ ¥(K,p1.p3)
+C(k,p1,ps)IC(K,p3,P2) (15
for the OZ equatior{13) and
c(r,p1.P2) =exd — Buo(r) — Bu(r,p1,pz) + ¥(r,p1,P2)
+B(r,p1,p2) 1= 1= ¥(r,p1.P2) (16)
for the closurg14). The PDF is then computed fromas
g(r,p1,p2) =exf — Buo(r) — Bu(r,py,pz) + ¥(r,P1,P2)
+B(r,p1.p2)]. 7

We remark for completeness that a transform féi) and
f(k) is defined by

f(r)= ! dkf(k)eikT
()= dKT0ER, a8
"f'(k)zf drf(rye k. (19

B. Expansions in orthogonal polynomials

The conventional next step in solving Eq$5) and (16)

is, as noted, to explicitly break out the angular dependence of
all functions in the form of expansions in spherical harmon-

ics [7], writing, e.g.,[9]
y(rvplipZ):’y(ripl=p21wlvw2)
:47TI Izm Y1,1,m(FP1,P2) Y m(@1) Y (@),
1:12,

(20

wherem=—m. In this and similar expressions, the vector

r has been implicitly chosen as tkaedirection in the speci-
fication of the Euler angle®= (6, ¢). What makes this ex-

pansion particularly useflilLO] is of course the orthogonality

of the spherical harmonics,

| do¥im(@ (@)= 80, (2D
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Vi 1,m(T,P1,P2) = > leﬁZiq(r)inll(pl)anlz(pZ).
nq,No
(23

which are constructed to be orthogonal with weight function
f(p),

4 [ “ADRH D)0 (PI QP =0, (28

so that coefficients of the expansion are again obtainable by
quadratures,

NP = fo dpdp,[4mpif(py) I[47P5F(p2)]

X Y1,1,m(1P1,P2)Qn,1,(P1) Qn,1,(P2)-
(29

Since the distribution functiof(p) will evolve during the
course of an iterative solution, the associated polynomials
Qni(p) will also change. In principle, for a gener&p) one
may have to determine th@,,(p) by elementary methods,
such as Gram-Schmidt orthogonalizatidri], starting from
Qoo(p)=1. At least initially, however, the distribution
f(p) in the present calculation will be Gaussian and the
needed polynomials are immediately found in the form of the
eigenfunctions of the quantum-mechanical harmonic oscilla-
tor in three dimensions using spherical coordinates. For a
Gaussian distribution of variana# 3,

1 Bp?
f(p)= WGXD( - Z) : (26)
they are[12]
T¢ (n—h+1)r) "% gp2\ "
Qui(p)=| —— AU i
rGm+h+3) 2a
2

XLz:fﬁ,z(i—‘;), @

where L2(t) is an associated Laguerre polynomjati,13
andI'(z) is the gamma function. For the cases studied in
Sec. IV, it will turn out in fact that the computed deviations
of f(p) from a Gaussian are very small, permitting retention
of these polynomials, with changing, for the entire calcu-
lation.

In brief, the approach being taken here is a straightfor-
ward extension of the standard procedure for molecular flu-

so that the coefficients of the expansion are immediately obys: To solve the coupledOZ plus closurk equations(15)

tainable by quadratures,

1
7|1|2m(fyp1,Pz):Ef dodwy¥(r,p1,P2,@1,02)

X Yl*lm(wl)erm( 7). (22

and(16), expand all functions im space in the form

YrPup) =4 2 A2 (1)Qny,(P1)Qn,,(P2)

ni.ng.ly,l,m

XY m(01) Y @), (28)

We now similarly break out the fluctuating-dipole depen-where thez axis is along and the summation indices satisfy

dence in the form of expansions in polynomialspof

the constraint$12]
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n=0,1,2,3,..., so that Eq(34) can be integrated to give the new fluctuating-
dipole distribution as
[=n,n—2n-4,...,1 or0, 29
n e —_—
m=0,+1,+2,... *I. fo(P)] n=27s,...\3n £nQno(P
The inverse of Eq(28), w2\ . BP?
L) —
r)—47rfd dp,f(p1)f(p2) y(r,p1,P2) ) R
Vi PodRt(P)H(P2) V(T P2, P2) Qny (P2 HereL"(t) is the associated Laguerre polynomial renormal-
X Quyt,(P2) Yl 01) Yt @2), (30  'zedtouniy,
- L(j+1)I(1+3/2)]Y2
: 1+1/2 _ | +1/2
follows from the complete orthonormality statement, L; )—[ TG +1+32) L™ 74(t). (38
4 f dpf(P)Qni(P) Qi+ (P) Yim(@) Y (@) More explicitly, Eq.(37) reads
2 5 1/2] Bp2
:5 75 /5 /. (31) — _'B_p — — S
nn’ 011" Omm Inf(p)=Info(p)+&5| 1 3% +&4 8 1-2 32
Similarly, for functions ink space, set the axis alongk and 3( Bp? 2
expand; e.g., + = il + (39)
5\ 3a
Y(kpr.p)=4m > V1K) Q1 (P1) As mentioned earlier, it is found by calculation that, for the
M1Nz.l1l2.m cases studied in Sec. I\, is very small, smaller tha#, by
Xanlz(pZ)Yllm(wl)le_m(wZ)- (32 some two orders of magnitude. In these circumstances,

f(p) remains Gaussian to a very good approximation and its
Egs.(28) and (32). The coefficients of these expansions are®- We have
not themselves mutual Fourier transforms. 3 (2maq 124, gp?
Inf(p)w—zln —— |+ & 5|5

C. lterative solution for f(p) B a 3al 2
The simplification these expansions effect is immediately 3 [(2ma') pp? 40
reflected in the evaluation of E¢L2) for f(p). We note first T2 n B 2a'’ (40
that using the inversion, E¢30), one finds that the expan-
sion coefficients of the dipole-dipole potenti&) are wherea’, the newa for the next iteration, is
1 «a ) 2 ag -1
Bull({r):_r_s, a =g 1+§;§2 y (41)
u " a and so, upon convergence, we have finally
Buln(r):ﬁun—l(r):_r—gi (33 ,
: . o : a=ao(1——§z : (42)
which are the obvious generalizatiofsuperscripts 11 ap- 3

pear, sinceu is bilinear in p;,p,) of the coefficients for

permanent dipoles. Then introducing the expansionsarid If we further note tha, is just the reduced dipole-dipole

g into Eq. (12), we find immediately mean en(_argygzz,BU DD/I\_I, we see that Eq41) is precisely
the iterative scheme derived by Prg®] and by Hgye and

d f(p) 4B\12 Stell[4] in the context of their solutions of the MSA version

dp ”[W}:—(g)—a) n:2;6 £Qn-11(p), (34  of this problem. It is clear that this result is in fact quite

general and not restricted to the MSA and other linearized

where approximations.

D. Iterative solution for g(r,pq,p»)

1
=—p| dr n L3 gutlor). 35
n 2" m:ZLO,lgljm ¢ )BT 39 With the internal degrees of freedom included in the ex-

pansion bases, the solution of tk@®Z plus closurg equa-
Further, it is easily shown that far even, tions for a polarizable fluid follows along a path already
1o taken for purely molecular fluidgl4,15. Thus, upon intro-
B a dQno(p) ducing the full expansion§32) for y andc and exploiting
Qu-1aP==| 5] —go

nB (36) the orthonormality of the basis functions, E§1), one finds
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that the Ornstein-Zernike equati@h5) goes over into a set To(K)=(—=1)"pC(K)Cp(K)[1 = (—1)™pC (k)] 2.
of matrix equations for the respective coefficients (45)

Y2 (K)=(—1)"p 2 [ (k)+¢T 1" (k) ]E "™ (k)
n3.l3

Yy Il Il Il ~ ~ _ ,
2 ram va’m 32 43 Herel',,(k) andC,,(k) are, respectively, the symmetric ma-
' . | trices with elements"irlll';fn(k) and?:'lnlll';fn(k), n,/=m, and
or, In matrix notation, | is the unit matrix. The degree of these matrices is deter-

mined by the largest value of the index call it M, that is

= -
Iin(K)=(=1)"p[I'm(K) + Cin(k) ICm(k), 449 sed in a calculation. Thus, by way of example, ko4

which have the solution the matrixEl(k) is
|

Tk Tk 0 0 Tixk O

Sk Tk 0 0 TH 0
0 0 TH(k Tk 0 Tk
0 0 TPk Tk 0 Tiyk

Tk Tk 0 0 T3k 0
0 0 Tk Tk 0 Tink

As is apparent from this example, these matrices in fact furspectively, all of ordelN, and so each witiN, roots. The

ther factor into odd and even submatrices for which the maw are the corresponding Gaussian weights

trix solutions of Eq.(45 may be found separately, a very

minor saving in computation. W(i)={ti[liﬁ’2’(ti)]2}*1, 47
The computational parametd = max(m) determines P

the total number of distinct coefficients used in a calculation.

For M=0,1,2,3,45., .., this number is W(k):{(1_X§)[P',“p(xk)]2}_l’ (48)
1,3,10,22,49,91,. ., respectively. TheFORTRAN program
for this calculation was designed to use up to the 49 coeffi- w(j)= N;l, (49
cients forM=4; in practice, it is found tham =3 with 22
coefficients is entirely adequate. where prime denotes derivative. Finallg,,(x) in Eq. (46)

As with purely molecular fluids, the evaluation of the clo- s the associated Legendre function normalized to 2.
sure relation, Eq(16), is the most time-consuming step of  Equation(46) and its numerical conjugaférom Eq.(28)]
the calculation. Here the functiop(r,p1,p,,®1,w>5) is first
assembled from its coefficients using E88) [see Eq.(50)

below for the numerical versidnas are the potentials afic y(r,ig,ip ke, kg, j)= EI: | 7|nll|2$n(r)inll(i 1)
some fashion the bridge function B, from which f1N2:f1 12
9(r,p1,P2,w1,@,) is computed using E|17). The coeffi- X Qn,1,(12) P m(K1) Piom(K2) vm Tr(])
cients ofg are then explicitly calculated by evaluating the
inversion equatiort30) using Gaussian quadrature: (50
- Np _ _ _ constitute separable, five-dimensional transforms. They are
gra(mn= X wi)w(i)w(ky)w(ky)w(j) each executed as five successive one-dimensional trans-
iz Kakg i =1 forms, following a generalized fast-transform algorithm pro-
Xg(r,ig,iz ke kg, j) posed by Orsza§l7]. In Eq. (50), vo=1 and v,,=2 for
m>0.
X Qny1,(11)Qn i (12) Pr m( K1) Pim(K2) The OZ equatior(45) effects the transformation
X(=1)™Tm(j)- (46) =nyn

C |1|2$n( K)— 7|nll|2$n( k)
In this expression,i used as an argument stands for
ti=Bp?/2ao, the ith root of LyXt), k for x,=cosf,, the in Fourier transform space, while the closure relation pro-
kth root of Py (x), andj for ;jzcosﬁj, the jth root of  duces the inverse transformation in direct space,
TNp(y), where Lﬁf(t)’ PNp(x), and TNp(y) are the asspci- MR () Pt (1)
ated Laguerre, Legendre, and Chebyshev polynomials, re- lilom l11om
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[combining Eq.(46) with c=g—1—v]. It remains to link (1) o
these two together, in a cyclic loop for the iterative solution P.(r)= J dr' > (r ) Es(r’)
of vy, by the Fourier transform steps E9=0
- dr’ r—r")EY(r 53

|nl|n$n(r) |nl|n$n(k) f Eﬂ: Xaﬁ( ) ( ) ( )

and the inverse where
0 L1 8%Inz
V(0= ¥ (). X =)= 5 D) 5B oo

Because the angles associated with the conjugate coeffi- =,8< 2 PaiPg; 5(r—ri)5(r’—rj)>
cients are defined in different spac@dth the z axis along b E0=0
r in one case and alorigin the othey there are several parts (54)
to these Fourier transforms that are detailed in earlier publi-
cations[14,16]. is the susceptibility tensor of the system with respect to the

The final result is a computational cycle for that is  external field. Applying the definitions of the one- and two-
repeated until convergence is achieved, whereupobody distribution functions, Eq$8) and(9), and specializing
g(r,p1,p,) is known for the current dipole distribution them for zero field, we find
f(p). The program then returns to EQ7) for recalculation
of f(p) (actually, recalculation of the widtly) and a new
cycle is started fory. [The (OZ plus closurgcycle for y is
“informed” of the new f(p) through the new values of the 0B
u coefficients in Egs(33).] The entire calculation is repeated 2 / = | PP /52
until overall self-consistency is reached for bdtfp) and o7t (P (pNe(r PO} [ 3 {pHe(r)
g(r,p1,p,). The iterations forf (p) converge very rapidly.

x?,ﬁ(r)=ﬁf dp dp’papsipf(p)d(r)s(p—p’)

+Bp2f dp dp’f(p)f(p’)g(r,p,p’)pap;}5ag
(55)

Ill. ELECTROSTATICS

Several electrostatic properties of the nonpolar, polariz-
able liquid are computed in Sec. IV. Here we briefly reviewWe may now put the axis in the direction of and use the
their derivation using the formalism developed above. Afull expansion ofg(r,p.p’) [see Eq.(28)] to evaluate the
great amount of progress has been made in recent years liamaining integrals. The result is
formulating an atomistic description of the electrostatic prop-

erties of fluids{18—24, in contrast to the traditional view of Xo(1) = X9y(1) = ap[ 8(r) = pg1iy(r)], (56)
dielectric materials as continuous. In this section, we seek to o 1
exploit the orthogonal polynomial expansions for polarizable XzAT)=ap[ 8(r)+pgyidr)], (57)

fluids to rederive some of these results in a compact fashion.
where we have use(q:)2> 3alB.

A. Polarization density and dielectric constant The transform of)(w(r) from Eq. (55 is

The polarization density at pointin the fluid in the pres- ~0 _ 5 , T , ,
ence of an external electric fielBO(r) is defined by the X aalk)=ap*Bp” | dp dpf(p)f(p")N(K.p.p")P.P,

canonical average (58)
_ and expansion ﬁ(k,p,p’) as in Eq.(32), with z axis along
P(r) <2 pio(r=r )> (5D k, similarly leads to
taken with the probability density iB, Eq.(2). Equivalently, XoolK)= Yy(k) ap[1- ph (W], (59
it is obtained, in component form, as the functional deriva-
tive X 24K = ap[1+ph1idk)]. (60)
1 8inz The connection between the dielectric constarand these
_ susceptibilities i§22]
ﬁ 5EO r) <2 pal > Pa(r)v (52)
4mlimy (k) =4xlimy ) (k)=e—1, (612)
k—0 k—0

where subscriptr is X, y, or z, the Cartesian components.

The respons®(r) can formally be calculated to first order in 1

the perturbing fieldE%(r) in the form of a truncated func- 47T|'szz(k)— (62
tional Taylor-series expansion k—0
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and so we find
- Hi1dr,Po) = A gllo(r)in Po)/Q11(Po)
e=1=4map[1-ph1(0)], (63) e
- ﬁpo)
_ 2j+1, 1 L3/2< , 74
Arap[1+ph i 0)]. (64) =2, il 2a (74
d similarl
The ratio of these gives finally and simiiarty
. S ~ 20| BPG
_1phin0) 5 Hauir po)= 2, g%‘ﬁ%r)L?’z(g . (79
1+ph 0(0
Alternatively, Eq.(73) can be rearranged to read
which is the direct analogwith superscripts 1)lof the di-
electric constant of permanent dipoles. 1 1
Other analogs are easily obtained. Thus, from the trace ofP(r|p0)_ PHA(T.Po)Po+ 3PHD(r Po)L3(F-Po)f o,
X 55(0), wehave (76)

(e—1)(2e+1)
B v =4map| 1+ 3ph Y0)|, (66)
hik=hli(k—2hiik), (67)
while the difference of Eq963) and (64) gives
_1)\2
(e 61) — —4map®h 30), 68)
(k) h 0(k)+hlll( ). (69

B. Reaction field of a fixed dipole

In the absence of an external field, the polarization density

from Eq. (51) of course vanishes by symmetry,

P(r)=fdpp“>(r,p)p=pf dpf(p)p=0. (70

If, however, we calculate theonditionalpolarization density
atr, given a dipolep, at the origin, we get the induced field
of the dipolep,. Define the joint distribution

P(r,po) = <2p,5(r D 8(r;) 8(po— )>

EO=0

=p2f(po)f dpf(p)g(r.po.p)p. (71)

The density of molecules with dipolp, at the origin is
pf(po), so the conditional distribution of polarization given
po at the origin is

P(r po)
pf(po)

Once again, the full expansion gfr,py,p) allows this in-
tegral to be readily evaluated. The result is

P(r]po) = P fdpf(p)g(r bo)p. (72

Pol.
(73

P(r|po)=pH11dr,Po) (T - Po)T + pH114(r,Po)[ (T - Po)T —

where

where HAE H110_2H111 and HDE H110+ Hlll' The J =0
term of Eq.(76) is Pratt’s resul{3] in the MSA. Following
Pratt, we use this distribution to get the reaction field
Er(po) produced at the origin by the polarized system,

1 .
R(po):f drr_3(3”_1)'P(r|po)

2 Ho(r.po) < ~ 3 BPG
:pogpf drr—3=po;0 52j+1|—j3/2 Sal’
(77
where
1
:§pf drr_s[g o(r)+9111 Nl (78)
More explicitly, we have
5 1/2 Bp
Er(Po)/Po=£1+E3 ) (1—5—; toe (79

where again the leading terf is Pratt’s resul{3].

IV. RESULTS

Using the integral equation procedures described above,
the thermodynamic, dielectric, and structural properties of a
system of nonpolar, polarizable Lennard-Jones molecules
have been calculated for ten states for which the molecular-
dynamics data of Pollock and Ald¢23,24 are available.
The specific closure used is the optimized reference
hypernetted-chaifRHNC) approximation25—-27, with the
bridge functionB represented by just a spherically symmet-
ric hard-sphere term

B(r,p1,P2) ~Bus(r;ons)- (80
The critical feature in this approximation is that the hard-
sphere diametearg is considereddjustable[26]; it is cho-
sen to satisfy the optimization conditi¢a7]

JB o
f dr[g3y(r) — gus(r; crHsnM 0, (81)
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TABLE |. Computed thermodynamic properties of a nonpolar, polarizable Lennard-Jones liquid for ten
states characterized by T, and o values;oys is the corresponding hard-sphere diameter of the reference
system for the optimized RHNC closure used in the calculation.

State po’ kgT/eLy aglo® opslo ﬁU_DD/N BU/N Bplp a(Bp)!dp

1 0.840 0.700 0.02 1.0244 -0.007 -8.709 -0.213 21.79
2 0.844 0.838 0.02 1.0160 -0.007 -7.127 1.121 22.12
3 0.844 0.820 0.04 1.0169 -0.027 -7.326 0.974 22.13
4 0.840 0.720 0.05 1.0230 -0.041 -8.470 -0.023 21.67
5 0.844 0.832 0.07 1.0161 -0.082 -7.258 1.022 21.96
6 0.200 2.010 0.10 0.9081 -0.037 -0.689 0.808 0.713
7 0.700 1.970 0.10 0.9743 -0.144 -2.332 2.028 8.166
8 0.840 0.670 0.10 1.0260 -0.168 -9.304 -0.686 21.48
9 0.844 0.836 0.10 1.0156 -0.172 -7.305 0.986 21.74
10 0.840 0.800 0.14 1.0171 -0.362 -7.825 0.486 20.73

which minimizes the free energy and improves the internal ﬁU—DD

thermodynamic consistency of the approximation. A better
approximation would include at least the same coefficients of
B as are present In t.h.e total potential, but I.|ttle IS knownthe induced dipole-induced dipole part. Similarly, the general
about the higher coefficients. However, experience with SYSaxpression for the pressure
tems of dipolar moleculefl 6,28 and the relative smallness P P

1
2-cof o 3 ghmuhn @9

of the induced dipolar effects suggest that reasonable results Bp 1
can be obtained with just E¢80). The hard-sphere correla- —=1- gpf ar = > grll'zfn(r)rﬁﬁl,nfn—'(r)
tion functions needed for this are modeled with empirical fits P n1.nz.ly.lz,m 12

[29,30. The closure, Eq(80), is the only approximation in (86)
this calculation.

Integrals overr are evaluated using the trapezoidal rule
on a grid .ofNr=1024 points with an inte.rvaAr/a=0.02._ Bp  Bpo ,BU—DD
Similarly, integrals ovek are evaluated using the trapezoidal —=— N (87)
rule and N, points, with an intervalAk=7/N,Ar. The p P
Gaussian quadratures for the expansion coefficients, E%h ere
(46), are carried out wittN,=6 points; increasing this to
Np|= 10 produces no significant changes in the computed re- BPo
sults. —=

The thermodynamic properties computed are the usual in- p

ternal energwl, pressurep, and isothﬁrm_al corr;pressibili_ty and the dipole-dipole increment reduces to the equivalent
K. For a total potentialp(r,p;,p2), the internal energy is  gnergy contribution. In these expressions, the prime denotes

here yields

1
1—€pJ drgdd4(r)r Buy(r) (88)

given by a derivative. Finally, the compressibility; is obtained as
By 1 app) B
szpj dr dpdp,f(p1) F(P2)9(r,P1,P2) BH(T,P1.P2) 7=E=1—pf dregodr). (89)
1 nn nen The computed thermodynamic results are listed in Table
= — 1'2 12
2pf drnl,nz%b,m g'l'zm(r)’g(b'llﬁ(r)' (82) I, along with the values of density, temperaturel, and

intrinsic polarizibility «q that characterize the ten states. For
For the present calculation, this becomes completeness, we also give t.he. ha_rd—sphere diameter
that results from the RHNC optimization, E&1). All quan-

— tities, along with those of Table II, are expressed in dimen-

ﬂ _ & BYop (83) sionless form, using the Lennard-Jones parameters of7Eq.
N N N where appropriate. There are no published molecular-
dynamics(MD) thermodynamic data for comparisons.
where The dielectric properties stemming frosg are assembled

in Table 1l for the same ten states. We see that the exact
3U— 1 expansion forf(p) given by Eq.(37) or (39), with coeffi-
PZ0_ _pJ drgggo(r)ﬁuo(r) (84) cientsé,;, is very rapidly convergent. In fact, with, about
N 2 two orders of magnitude smaller th&; in all cases,f(p)
remains essentially Gaussian throughout, with a width
is the Lennard-Jones contribution and a> ag that is obtainable frond, through Eq(42). Similarly,
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TABLE Il. Computed electrostatic properties of a nonpolar, polarizable Lennard-Jones liquid for the
states of Table I; comparison with molecular-dynani#) results of Pollock and Ald€23,24.

o3ER/po €

State & &, ale® o3& o363 Presentwork MD  Present work  MD

1 -0.0068 0.0000 0.0201 0.2259 -0.0000 0.226 0.22 1.227 1.23
2 -0.0069 0.0000 0.0201 0.2302 -0.0000 0.231 0.23 1.229

3 -0.0271 0.0000 0.0407 0.4438 -0.0002 0.445 0.45 1.497

4 -0.0414 0.0000 0.0514 0.5375 -0.0004 0.540 0.53 1.646 1.64
5 -0.0824 0.0001 0.0739 0.7441 -0.0012 0.748 0.77 2.003

6 -0.0372 0.0006 0.1025 0.2418 -0.0039 0.242 0.23 1.280 1.27
7 -0.1437 0.0011 0.1096 0.8743 -0.0069 0.873 2.284 2.24
8 -0.1675 0.0006 0.1112 1.0047 -0.0033 1.013 2.688 2.64
9 -0.1720 0.0006 0.1115 1.0286 -0.0038 1.035 1.04 2.699

10 -0.3619 0.0032 0.1738 1.3883 -0.0123 1.397 1.40 4.150 3.94

the exact expansion for the reaction field of a fixed dipoletribution functionf(p), with no further approximations be-
Eq. (77) or (79), is dominated by the leading teréy; the  yond that of some closure relation familiar from simple clas-
second term with€;, however, does make a detectable, if sical liquids.

small, difference for larger, and improves the agreement  We have carried out here such a program for nonpolar,
with the MD data of Pollock and Ald€23,24. As in that  polarizable fluids, generalizing for arbitrary closures the
work, the total reaction fieldEg(po) is evaluated for unit MSA solutions of Pratf3] and Htye and Stel[4]. By being
dipole strengtip, /(o€ 5)?=1. Finally, we list the dielec- able to go beyond the Gaussian approximationf{gr) that

tric constante calculated from thé 13..(0). Where MD data  is inherent in the MSA solution, we could demonstrate by
are available for comparison, the computed results in Tablealculation that in fact this is an excellent representation of

Il are seen to be quite good. f(p) in dense systems. Other models with a classical Boltz-
mann factor for the internal degrees of freedom can presum-
V. CONCLUSION ably be studied in the same way, most immediately systems

of polar, polarizable molecules, which/i® and Stell[4]

The internal degrees of freedom of molecules in a liquidhave also solved in the mean spherical approximation.
may couple with the external ones of position and orientation Coupling the external degrees of freedom to internal
so that they affect and are affected by the microscopic strucguantum-mechanical variables in a similarly computable
ture of the liquid. The principal motivation for this work is fashion is a more challenging task. Stratt and co-workers
the sense that these internal coordinates should be manadé;31] have formulated an elegant method to convert quan-
able in liquid state calculations in much the same way as areum problems such as calculating the band structure of a
the orientational degrees of freedom: through expansions iliquid into equivalent classical problems of determining the
special orthogonal polynomials tailored to the specific casegair structure of liquids with artificial internal degrees of
When the internal variable, such as the fluctuating dipoldreedom and have further solved such problems in the mean
momentp treated in this paper, has a distributibfp), this  spherical approximatior1,31-33. Unfortunately for the
means polynomials orthogonal with weight functié(p). present goals, however, this conversion makes use of the
Given these polynomials, one can construct an algorithm foanalytical “replica trick,” which does not lend itself to the
the iterative solution of the mutually dependent microscopionumerical handling required for a general closure. Whether
liquid structure, as described by the pair distribution functionan adaptation of their method that does allow for numerical
g(r,p,p’), and “internal structure,” as described by the dis- solution is possible is an open question.
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